
NASA-CR-192?64

/ /v'-d /- iSi-

1..6-f186

Final Technical Report

Telescience Testbed Program
A Study of Software for SIRTF Instrument Control

Grant NAG 2-661

30 June i992

Erick T. Young, Principal Investigator

Steward Observatory

University of Arizona

(NASA-CR-192764) TELESCIENCE

TESTBED PROGRAM: A STUOY OF

S_FTWARE FOR SIPTF INSTRUMENT

CONTROL Final Technica| Report

(Arizona Univ,) 25 p

G3/61

N93-24476

Unclas

0154188

A Study of Software for SIRTF Instrument Control

I. Summary

As a continued element in the Telescience Testbed Program (.[.IT)), the University

of Arizona Steward Observatory and the Electrical and Computer Engineering

Department (ECE) jointly developed a testbed to evaluate the Operations and Science

Instrument System (OASIS) software package for remote control of an instrument for the

Space Infrared Telescope Facility (SIRTF). SIRTF is a cryogenically-cooled telescope

with three focal plane instruments that will be the infrared element of NASA's Great

Observatory series. The anticipated launch date for SIRTF is currently 2001. Because of

the complexity of the SIRTF mission, it was not expected that the OASIS package would

be suitable for instrument control in the flight situation, however, we considered its

possible use as a common interface during the early development and ground test phases

of the project. The OASIS package, developed at the University of Colorado for control

of the Solar Mesosphere Explorer (SME) satellite, serves as an interface between the

operator and the remote instrument which is connected via a network. OASIS provides

a rudimentary windowing system as well as support for standard spacecraft

communications protocols.

The SIRTF instruments share many common operational, human interfacing and

data processing requirements. All three SIRTF instruments use infrared detector arrays

that generate two-dimensional image data, all three have filter wheel mechanisms and

internal calibration sources, and all three instruments will have similar housekeeping

telemetry (temperatures, voltages, currents, etc.) Our goal for this experiment was to

evaluate several software alternatives in order to establish a common human/computer

interface for developing instrument control and analysis software for all SIRTF

instruments. By establishing a common framework early in the definition phase of

SIRTF, the three instrument teams could realize a considerable savings in effort and

resources. An additional aspiration was to identify a systems architecture that would

separate the programming for the instrument hardware from the programming for the

human interface. The key to this second goal is the establishment of a well defined

communication convention between the various software components.

This study was implemented in two stages. The fh'st consisted of an experiment

evaluating the suitability of the OASIS package for instrument control of an infrared

detector array from the Multiband Imaging Photometer for SIR'IT (MIPS). The testbed

for this activity simulated the operation of one of the MIPS instrument detectors by

utilizing a program written in. the C language. An IBM PC was the instrument-

controlling computer. Instructions to the IBM PC were communicated remotely using an

Ethernet connection from a DEC MicroVAX II workstation running OASIS. During this

first stage, some of the limitations of the OASIS package became clear. In particular, the

inability to support display image from the remote task was identified as a major

2
PRE_q)ING P_E BLANK NOT FILMED

weakness. Consequently, the second stage involved the investigation of the availability

of other software packages that might be used for instrument control.

The experiment performed all of the functions required of the MIPS simulation

program. Remote control of the instrument was demonstrated but found to be

inappropriate for SIRTF at this time for the following reasons: (1) programming

interface is too difficult; (2) significant computer resources were required to run OASIS;

(3) the communications interface too complicated; (4) response time was slow; (5) quick-

look of image data was not possible. =

2. Introduction

The Space Infrared Telescope Facility (SIRTF) is planned to be launched in the

early 2000's. SIRTF is a 0.9-meter cooled telescope with a lifetime of >3 years. It will

serve as a national facility for infrared investigations in all areas of astronomy and

astrophysics. Three instruments have been selected for SIRTF: the Infrared Array

Camera (IRAC); the Multiband Imaging Photometer for SIRTF (MIPS); and the Infrared

Spectrometer (IRS). These instruments are being developed by separate teams centered

at the Smithsonian Astrophysical Observatory, the University of Arizona, and Cornell

University, respectively. During 1992, significant changes have been made in the SIRTF

concept, with the goals being to greatly simplify the mission and to reduce costs. Since

the redefinition work is still ongoing, this study was done using the earlier mission

concepts. Those characteristics are summarized in Table 1

The Infrared Array Camera will provide wide field and diffraction-limited

imaging for wavelengths between 1.8 and 30 lam. IRAC will utilize infrared arrays with

formats as large as 256x256 pixels. The Multiband Imaging Photometer for SIRTF will

extend the imaging capability to wavelengths as long as 120 _m with arrays as large as

32x32 elements. Additionally, MIPS will have small detector arrays that will provide a

photometric capability out to 1200 I.tm wavelength. The Infrared Spectrometer will

provide low and medium resolution (L/A_ ~ 100 - 2000) spectroscopy between 3 and

200 l.tm. Like the other SIRTF instruments, the IRS will use large arrays of infrared

detectors..

Although the three instruments are diverse, they share many common aspects in

term of modes of operation, interfacing with the facility, and data processing. In

particular, all three instruments utilize infrared array detectors of various types, have

filter and optical mechanisms, and have similar housekeeping requirements. Moreover,

the conceptual processing stepsto go from raw instrument data to useful quick-look

information are quite similar. Despite these many common aspects, the teams have

independently developed software for the control of their test detector systems. It has

become clear, that the teams could realize a considerable savings in effort and resources

if they used a common framework for developing the instrument control software.

Table 1. SIRTFInstrumentCharacteristics

Wavelensth(_m)

1.8-5.3
5.3-27

30-55
50-120
120-200
200-500
500-1200

2.5-4
4-36
36-50

50-115
115-200

Array Format
IRAC

256x256
128x128
MIPS
16x32
32x32
2x8
2x2

1
IRS

256x256
128x128

2x8
Stackedlx32

2x16

Function

High ResolutionImaging
High ResolutionImaging

Photometry
Imaging,Polarimetry

Photometry
Photometry,Polarimetry
Photometry,Polarimetry
SpectroscopyResolution:

R=75-150
R=75-200,R=1500-2500
R=75-200,R=1500-2500
R=75-200,R=1500-2500

R=750-1250

Figure 1 shows a possible simplified model for the structure of the SIRTF data

system. It is important to remember that the SIRTF data system is currently under

conceptual design, and the model presented is only one of a number of possible

configurations. The actual system configuration will not be finalized until detailed

system level trade-off studies have been done. The model in Figure 1 represents a

generic type where a significant amount of intelligence is present in the instrument

computer. The version shown in Figure 1 has the advantage of having separable

components that allows a modular development effort. In particular, the interface

between the instrument and spacecraft computers is well defined. This investigation

assumed this model.

In this proposed data system model, each of the instruments has a computer that is

responsible for both hardware control of the instrument functions and communication

with the spacecraft computer. The spacecraft computer handles the operation of the

overall spacecraft systems such as attitude control, power distribution, etc., and it also
serves as the communications interface between the instruments and the telemetry

system. All signals between the instruments and the spacecraft are communicated via a

well defined packet protocol. Hence, under this model, the instruments would require at

least enough computing power and memory to handle functions such as data buffering,

data compression, and data packetization.

i JZX,S,RUMENT C'-M_UNiCA T'r,EN

_ CCMPU T_._ [NTr_FACE

UJs"
:EL,j

[RS

[NS'_UMENT

CCMPUT_

CCMMUNICATZON 1

[NTE_FmCE I

l

_4

<

[i)

(J

QI

S=_'-_ZT__L_

CSMMLN[CATZ2N

[NT£RF_CE

S_aCESRAFT

CSMPUTER

i

illlli_i,_I

SPACECRAFT

SYSTEMS

i TELEMETRY

---i SYSTEM

i

i

i

i

_J

Figure 1. Strawman SIRTF Data System Model

2.1 Goals and Objectives

As envisioned in the mission operations plan, control of the satellite and the

instruments will be the responsibility of an Operations Center. A key step in the

development of the mission will be the transfer of knowledge from the individual SIRTF

teams to the Operations Center staff. Through the use of a common software framework,

the process of translating instrument requirements into Operations Center software will

be greatly simplified.

Enhanced reliability of the software is an additional potential benefit. The same

software could follow the instruments from the SIRTF development computers, to the

ground support computers. The enhanced reliability comes from using algorithms and

code that have been generated on the same software platform and tested with all of the

SIRTF instruments. The degree of duplication of effort is minimized.

The primary goal of the investigation was to assess the suitability of the OASIS

software package for control of SIRTF instruments during the development and ground

test phases. It was not expected that a generic package would have the performance

necessary for the actual SIRTF mission. Moreover, the anticipated operating scenario for

the mission involves pre-planned "canned" operation sequences and observations with

little opportunity for real time control.

With the data system architecture shown in Figure 1, the spacecraft computer

could be replaced with a ground test computer prior to integration. Since the MicroVAX

to the spacecraft or test computer is via a well defined protocol, changes in the

instrument hardware do not impact the interface. A goal of this investigation was to

demonstrate this architecture.

The OASIS control program is designed to be a general purpose instrument-

operator interface. To simplify the development of an OASIS application, the operating

functions (actions, screen displays, communications, etc.) are defined via applications

databases that are interpreted by OASIS. This flexibility is also potentially a liability

since an interpreter is significantly slower than a compiled custom application. One of

the objectives of this investigation was to evaluate both the ease of database coding and

the speed the program was able to carry out representative tasks.

Another objective of this investigation involved the identification of areas in

OASIS MicroVAX that were inadequate for the SIRTF application. Prior to our work, it

was recognized that the lack of image display capabilities in OASIS would be a serious

drawback in working with the image-oriented SIRTF data. Because of this deficiency,

we also did a preliminary investigation of two other software packages that include

image display and image processing capabilities. The two packages we considered were

PV-Wave (developed by Precision Visuals) and extensions to the Image Reduction and

Analysis Facility (IRAF) developed by the National Optical Astronomy Observatory

(NOAO).

2.2 Scope

The scope of activity for this study focused on a detailed experiment involving

OASIS running on a MicroVax workstation communicating with an IBM Personal

Computer (PC) instrument computer via a DECnet link. At the beginning of the

investigation, the Unix version of the OASIS package was not yet available, although

that was the desired configuration for study. The evaluation was done on the Vax VMS

version of OASIS with the expectation of migration to the Sun Unix version when it

became available. The VMS environment limited the choices for communications

protocol between the workstation and the IBM PC. We utilized the DECnet protocol for

this link since existing communications drivers were available for both ends. In a

separate effort, TCP/IP enhancements to OASIS have been developed (Wibowo 1990).

The Unix version of the experiment was subsequently compared with the VMS version.

At this point in the development of the SIRTF mission, complete simulators of

all the functions for either the MIPS or the SIRTF facility are some years away. As an

example, Figure 2 shows a functional block diagram for the MIPS instrument. The

instrument is envisioned to have five focal plane arrays, six rotating mechanisms, a

number of reference sources, and numerous thermometers. A full scale simulation of

MIPS was well beyond the scope of this investigation. Consequently, we limited the

investigation to a subset of the possible operations and data that will result from the

mission. Specifically, the MIPS instrument was simulated by a program that generated

sampled data from a single infrared detector array and also provided the expected delays

for operations such as power up sequences, filter changes, resets, etc.

Since it was recognized that image display capabilities were important in the

SIRTF context, we examined other programs that had a strong emphasis on image

processing and display. We limited out work to IRAF and PV/Wave since they are well

supported on Sun workstations. IRAF, in particular, has become a very widely used

program in the astronomical community.

2.3 Rationale

The rationale for this investigation was the potential savings in effort if a

common instrument interface could be identified for the three SIRTF instruments during

the development and ground test phases. Since the three instruments have many

functional similarities, we considered the use of a general purpose program that could be

adapted to the specific requirements of a given instrument. Moreover, the normally

tedious effort associated with coding the user interface should be minimized with an

effective general purpose program.
A second rationale for this line of investigation was the increase in flexibility of

the overall system if a common user interface and common communications protocol

were used during the development stages of the mission. In particular, the simplification
of the instrument interface to a well-defined communications standard (both hardware

and software) allows changes to be made in the instrument hardware or in the user

control workstation with minimal impact on that interface.

iL±3ovJ _OUJ tJiI Ig £30Vd _NOHd H_

3. Experiment Description

3.1 Architecture

The architecture of the SIRTF-OASIS experiment is illustrated in Figure 3. The

test configuration consists of a MIPS detector test simulator written in the C language.

The simulator represents the microprocessor based Instrument Controller (IC) which will

control the MIPS instruments on board SIRTF. The IBM PC compatible computer used

in the experiment served two functions, (1) to run the test simulator and (2) to represent

the spacecraft's flight command and data subsystem and the telecommunications

subsystem (Spacecraft). The Spacecraft is the interface between the Ground Support

Equipment (GSE) and the SIRTF instruments. The ethernet link represents the

communications link to earth. The DEC workstation running OASIS represents the

GSE.

TESTBED ARCHITECTURE

IBM PC/XT

Ethernet

Spacecraft
+

DECnet DOS and Ada Command Parser

MIPS Instrument Controller

Mk;mVAX tl GPX

Ground Support Equipment

OASIS As User Interface

MIPS Command Windows

DECnet and CCSDS via Ada Front-End

Figure 3. Testbed Experiment Architecture

9

3.2 Hardware, Software and Networks

An IBM PC/XT compatible computer was used to represent both the MIPS IC

and Spacecraft. It was connected to the University of Arizona Ethernet network using a
3Corn 3c503 Etherlink II Ethernet card. A DEC MicroVAX GPX Workstation running

the VMS operating system served as the GSE. The intent of the initial experiment was to

use industry standards like UNIX and the TCPflP communication protocol. At the time

of the experiment, OASIS was not available for a UNIX platform, therefore the VMS
version of OASIS was used on the DEC MicroVax machine. Since the Electrical and

Computer Engineering Telescience Laboratory (ECE TSL) had previous experience with

two testbed demonstrations using OASIS (Schooley and Cellier, 1988) it was decided to

modify existing software designed at the ECE TSL (Bienz and Hunter, 1988).

The overall block diagram for the software on the instrument control computer

(the IBM PC) is shown in Figure 4 (taken from Wibowo 1990) and is based on software

written by Pan and Lew (1988) for the remote fluid handling telescience project. The

Command Processing software on both machines was written in Ada. The Ada compiler

used for the MicroVAX was DEC Ada, and for the PC it was Meridian Ada. The

communication protocol between the PC and the MicroVAX was DECnet for the lower

layers. Consultative Committee on Space Data Systems (CCSDS) recommendations for

telecommands and packet telemetry, were implemented for the upper layer. VAX

DECnet was used on the MicroVAX, while DECnet-DOS was used on the PC. CCSDS

protocol recommendations were implemented through software interfaces written in Ada

on both machines. This was necessary to allow DECnet and CCSDS protocols to pass

CCSDS packets between them (Bienz and Hunter, 1988). More information about the

communication software design, see (Bienz and Hunter, 1988), for a more detail

description of the Command Processing software used in the SIRTF experiment see,

(Wibowo, 1990). OASIS was used to develop the user interface on the MicroVAX

workstation.

10

MOTE:...... Initial I_pie_entation
Final I_ple_tnt_t_on

I PACXU]2E_ [HTE_rACE

-, P_CXETI2ER

! +

rl

' 11

HETUORK 4_-,:---_ OASI)
IHY,ERF_¢() :,

I

IHTE_FACEI

_[¢NETLOGICALLIHK_AH_GER

i

_AIIDOW[S:

Prior_t_

Ti_e-ta_ed

ReaI-_iM+

MOH-KEYHOLDER

'l I

_L I SCHEDULERI

_ACXEI'IZER

HOTE:t, Tele-co_nd packel
acknouledgeto OASIS,_ron_
0_$I_u+rslonn_ber,

_. T+l+._tryandscientificdata
acknowledgetro_O_SIS

3, _AIL)OWn 6_iIsignal,n : t,_.....

4, Co.and error.+ssa_es

il ,y-holder_ILBOW resetKey reluest
Packetse(utncecounterror

_)ireotinterrupt

Figure 4. Instrument Control Computer Communications Software

11

At the user interface workstation, a number of displays were developed to provide

the operator with information on the status of the detector array operation. The

information displayed was divided into four categories: static parameters, active

parameters, display parameters, and action parameters. The static parameters were those

quantities that were only infrequently changed and were displayed primarily as indicators

of system health. The static parameters included various voltages, sample rates, etc. The

active parameters are quantities that could be expected to frequently change during the

operation of the instrument. Active parameters included filter wheel position,

observation time, and system mode. The only display parameter was used to set which

channel was displayed in the quick-look output. Finally, the action parameters were set

the system state for commands. Tables 2-5 list the commands associated with the various

parameters used in this investigation.

Table 2. Active Parameters Update Commands

Command

SET HLTER

SET SYSMODE

SET LOOPMODE

SETITIME

SET RA

SET DEC

T_e

integer

character

character

float

Parameter Format Allowed Range

ld

1s

integer

integer

lS

5.1f

2d:2d:2d

2d:2d:2d

1-7

C: Calibration

N: Normal

L: Loop

G: Global

S: Scan

Q: Quit

0.0-1000.0

hour: 0-24

min: 0-60

sec: 0-60

deg: -90 - 90

min: 0-60

sec: 0-60

Table 3. QuiCk-Look Parameter Update Command

Command

SET CHANNEL

T2_pe

integer

Parameter Format

2d

Allowed Range

1-32

12

Table4. StaticParameterUpdateCommands

Command
SETFILNAME

SETVOLTAGE 1
SETVOLTAGE_I
SETVOLTAGE_I

SETSRATE
SETBIAS_VOLT

SETDELAY.5IME
SETPWlDTH
SETHILEV
SETLOLEV

T_rpe
Integer
Float
Float
Float

ParameterFormat
2d
7.3f
7.3f
7.3f

Float 5.If
Float 7.3f
Float 5.If

Integer
Float

5d

Allowed Range

0.0-5.0
0.0-5.0
0.0-5.0

0.0-30.0
1-1000

3.1f 0.0-5.0
Float 3.If 0.0-5.0

Table 5. Action Parameter Update Commands

Command

SET INISYS

SET QLOOK

SET START

SET ABORT

SET SHUTDOWN

Type

integer

integer

integer

integer

integer

Parameter Format Allowed Range

ld 0-1

ld 0-1

ld 0-1

ld 0-1

ld 0-1

3.2 Issues Investigated

The main and foremost issue addressed was the ease of implementing and using

OASIS as the software development platform for the SIRTF instruments teams. How

much computer resources are required to implement the OASIS package and it's

associative software? How easy is it to program the OASIS database? How easy is it to

make quick modifications? Minimal computer resources, ease of use and a flexible

programming environment are key issues.
In terms of operational issues, basic control of the instruments such as monitoring

temperatures, turning filter wheels, etc., it was already clear that OASIS could do these
functions. It was not clear, however, how optimally OASIS could perform these

functions in a test environment typical of those performed by the various SIRTF

instrument teams. A second operation issue relates to the speed of the user interface.

13

Responsetime to operatorscommandsmust bekept at a minimum to preventoperators
from submittingrepeatedrequests.

Two technical issuesinvolve both engineeringand scientific analysis. An
engineeringissueaddressesthe needfor a graphicquick-look evaluationof raw data in

near realtime. The ability to conduct scientific graphic quick-look analysis (not realtime)

also needs to be addressed. Can we merge the capabilities of OASIS with analysis

programs such as the Image Reduction and Analysis Facility (IRAF) that would provide

astronomical quick-look capability?

3.4 Method of Investigation

The original experiment was to take place at University of Arizona, Steward

Observatory using the UNIX version of OASIS to do real testing of the MIPS detector

arrays. It was planned that an Electrical and Computer Engineering (ECE) graduate

student with OASIS programming experience would convert our detector test code into

OASIS database format. Because of the delay of UNIX OASIS, arrangements were

made with Co-Investigator, Dr. Larry Schooley, to conduct the actual experiment at the

ECE Telescience Laboratory (ECE TSL). The ECE TSL already had VMS OASIS

installed on a DEC MicroVAX GPX workstation. The DECnet implementation of the

communications software was previously developed the TSL for the remote fluid

handling experiment for the Telescience Testbed Pilot Program (Bienz and Hunter 1988).

A c-program was written to simulate a single array of the MIPS instrument and supplied

to ECE. Identification of required instrument functions and GSE computer displays were

developed by the MIPS systems programmer Irene Barg. These functional requirements

were then converted into OASIS database by ECE graduate student Yadung Pang. An

additional programmer was required to write the communication interface between the

simulation program and IBM PC DECnet DOS networking package. This

communications software was written by ECE graduate student Henky Wibowo.

4. Experiment Results

It took two programmers working half time approximately one month to code the

OASIS database and the communications software. Since the OASIS program was

already in place at ECE, the actual coding of the operational functions in OASIS

database form took approximately one week. The rest of the time was involved writing
the communication software. The modifications to the communication software were on

the PC. The parser on the PC was modified to accept the commands characteristic of the

MIPS array. The other major coding activity involved the development of the MIPS

detector array simulator program.

14

The computerdisplay is shownschematicallyin Figure5, and consistsof a set
of windowsidentifying theMIPS InstrumentController(IC) functionswhich include:

thestaticparametersicon
activeparameters
aquick look window
currentcoordinates(RA andDEC)
agroupof 'action'buttons

The staticicon popsupanddisplaystheparametersthat normally remainconstant
for the specific instrument or are changedonly infrequently. These valuescan be
changedat the beginning of an observation. They include, voltages, sampling rate,
detectorbias,pulsewidths andpulseamplitudes.

Theactiveparametersarethosequantitiesthat arefrequentlychanged.Theactive
parametersarealwaysdisplayedandupdatedby telemetryfrom theSpacecraftevery 10
seconds. Parametersinclude current temperatures,filter wheelposition, detectorbias,
integrationtime, time left in integration,andRA andDEC.

Thequick look graphicwindowplotsatime seriesline graphof thedatacollected
(in nearrealtime). The MIPS testsimulatorprogramsimulatedthedatacollectedfrom a
32x32 detectorarray. Since the OASIS packagedid not have any supportfor image
display, quicklook data were presentedas a time series. The observercan plot one
channelor a rangeof channels.Theseplotsprovide the groundsupportengineerswith
valuableinformationconcerningthe statusof the instrument.For example,if the dewar
housingthedetectorwerewarmingup, the valuescould start to drift. This drift would
appearon thetime seriesplot, eventhoughtthetemperaturevaluesdisplayedappearedto
bewithin theacceptablerange.

The actionbuttonsiconspopup sub-windowsandare the primary user interface
items.All actionbuttonsinitiateeventssuchassysteminitialization, changingthemode
of the detector, adjust active or static parameters,initiate quick look, begin an
observation,abortanobservationandfinally shutdowntheconnection.

The experimentperformedall of theoperationalfunctionsrequiredof the MIPS
simulationprogram. The ability to abort a taskremotelywasnot demonstrated.The PI
felt thatresponsetimesto commandswassluggish. Controlled speed measurements are

documented in greater detail in the Master's thesis of Wibowo (1990). These results are
summarized below. Three functions were measured: window display speed,

telecommand packet transmission speed, and telemetry packet decomposition speed. Ten

test runs were conducted for each measurement.

15

OASIS USER INTERFACE

MIPS Testbed Displays

Active

Parameters

Static

Icon

RA

DEC

Quick

Look

Action Buttons

Figure 5. Workstation OASIS Display

16

5. FUNCTIONAL AND PARAMETRIC EVALUATION

The ease of coding of the OASIS database was judged to be good.

Approximately two weeks were spend developing the database and refining the displays.

Since OASIS assembles the windows elements in an interpreted manner, changes were

easy to make. In that sense, OASIS is useful as an interface development tool. The

flexibility exacts a penalty in performance, however, as indicated by the times needed to

respond to action requests.

The window display speed measured the experiment's response to an ACTION

button being pressed. From the time the button was pressed, it took an average of 115.4

seconds to bring up the required display.

The telecommand packet transmission time is a measure of the OASIS command

translator and the communications link. The command SET INISYS initializes the

SIRTF parameters and was used to evaluate this time. The average telecommand packet
transmission time was 17.4 seconds.

The average telemetry packet decomposition time measures the time between

receipt of the first packet by the receiver process and the acceptance of the final packet.

For this evaluation a total of six packets were received. The measured decomposition

time averaged 16.4 seconds. Added together, the packet transmission time and the

packet decomposition time represent the total time spent sending a command from the

remote commanding computer to interpreting it on the local controlling computer. Once

the connections were made and commands interpreted, the actual data telemetry took

place at the maximum speed of the ethemet connection. All these times proved to be

unacceptably long for a laboratory or GSE environment.

Wibowo (1990) also reports results for the same software ported to the Sun/UNIX

version of OASIS using a TCP/IP protocol. The response of the system was found to be

significantly better than the MicroVAX implementation. The measured times were 39.6,

1.5, and 9.6 seconds, respectively. Although the total command response time has now

been cut by a factor of 3, some additional improvement is highly desirable.

The issue of quick-look capabilities was also addressed in this investigation.

Discussions with a number of astronomers underlined the need for image display to fully

understand the performance of the scientific instruments. In particular, infrared

astronomy has recently undergone a technological revolution with the advent of large

format infrared arrays. The proper operation of these arrays requires the ability to

display the data from all the pixels in a comprehensible manner. Since OASIS lacked

this capability, we investigated two other approaches to the image display problem.

These approaches are discussed in Section 7.

17

6. LESSONS LEARNED

6.1 Technical Requirements

The main technical lesson learned was the difficulty in tailoring a "general

purpose" program like OASIS to a task if the performance requirements are challenging.

Specifically, two areas were judged especially weak in OASIS. First, as an interpreted,

database-driven program, the response time was considered far too slow for useful

interaction with an infrared instrument. Since the primary use would have been during

the laboratory and ground test environments, quick response is especially important. The

user population has become used to good response time in windowed systems (as most a

very few seconds to open a complicated window), and the very long response times

associated with OASIS are clearly unacceptable. The Sun Unix implementation of

OASIS is significantly faster than the MicroVAX VMS version, but the times are still a

factor of ten too long.

The advantage of OASIS as an interpreted language is in the ease of developing

applications. The actual coding of the OASIS database was quick, and changes were

easily incorporated. The development of an OASIS compiler could do much to improve

the performance of the program.
The second area where the SIRTF needs were not well served by OASIS was in

the area of data display. Most astronomical data are now in the form of images, and

some form of rudimentary image display would be particularly useful.

6.2 Programmatic Requirements

Significant delays were encountered in the startup of this Telescience Testbed

Program activity. Most of the delays were directly attributable to the changing of the

lead center for the SIRTF project from NASA Ames Research Center to the Jet

Propulsion Laboratory. During this changeover, there was confusion over which center

should be responsible for the monitoring of this grant. This activity was ultimately

funded through Ames, but schedule for the SIRTF telescience investigation was not well

synchronized with the rest of the telescience program.

Since the funding came from the individual science disciplines (specifically

astrophysics in this case), coordination of various elements of the program was difficult.

In future testbedding activities, funding through a single program office would facilitate

one of the goals of this type of program -- interdisciplinary interaction.

6.3 How Did Telescience Help?

The main area that telescience helped was in the identification of a systems

architecture that best supported remote operations. By separating the functional aspects

of the data system and reducing the instrument-to-spacecraft control link to a well-

18

definedcommunicationsinterface,manyof the potentialconfusionsresultingfrom mis-
understoodinterfacerequirementsareeliminated.

The telescienceinvestigationalso clarified the actual requirementsfor a user
interfaceand the acceptablelevel of performance. In particular, usersare especially
sensitiveto theresponsivenessof a computersystem.In this investigation,we found that
delays of greater than a few secondsfor the generation of windows or for the
acknowledgementof requestsweregenerallyunacceptable.Additionally, imagedisplay
is essentialin mostastronomyinstrumentinterfaces.Sincethe scientificdataare,for the
mostpart, in imageform, adisplaycapabilityis neededif anycontrol programis to be
generallyuseful.

7. ISSUES IDENTIFIED�FURTHER STUDIES REQUIRED

During the course of this testbed we identified two other packages capable of

providing a software development platform for SIRTF. The two packages reviewed were

Steward Observatory's/IRAF data acquisition package called CCDACQ, and

PV-WAVE, Precision Visuals' workstation analysis and visualization package. An

overview of each package is presented below. To present a more accurate comparison

between OASIS, IRAF/CCDACQ and PV-WAVE, the same MIPS experiment should be

conducted with these two additional packages.

Steward Observatory's CCDACQ is a astronomical data acquisition program

written by Skip Schaller, Manager of Steward's Computer Group. It is a set of routines

that operate within the Image Reduction and Analysis Facility (IRAF) environment.

IRAF has become a de-facto standard in the US astronomical community, and it includes

most of the capabilities needed for the display and analysis of astronomical image data.

CCDACQ is an extension to IRAF that provides instrument control functions to the

analysis package. This program was originally written for use with the Steward

Observatory Charge Coupled Device (CCD) camera, but the software is general enough

for use with other astronomical imaging instruments.

CCDACQ is written in IRAFs Subset Preprocessor language (SPP) with low

level functions written in the c language. CCDACQ is a set of IRAF tasks that perform

various telescope, instrument and detector functions from a remote workstation.

CCDACQ is currently used at Steward Observatory's 90 inch telescope at Kitt Peak, in

lab testing of various optical CCD's, and is currently being incorporated into the

operations programs of three telescopes operated by National Optical Astronomy

Observatory at Kitt Peak.

19

The basic hardware architecture for implementing remote operations using
CCDACQ is similar to that usedby ourOASIS testbedandis shownin Figure6. In this
example,theremoteworkstationis running the UNIX operatingsystemand IRAF. The

real-time system contains the hardware interface needed to control the instrument. The

real-time system could be a VME chassis or an IBM PC housing intelligent controllers

used to communicate with the instrument(s). The instrument could be a single CCD

array, or an entire system of telescope, additional instruments and the detector(s). The

remote workstation is connected to the real-time system using an ethernet connection

(however, this could be a serial connection). The physical connection between the real-

time system and the instrument can be serial or parallel.

The CCDACQ, starts three processes that act as servers for the detector,

instrument and telescope. Communication between the UNIX workstation and the real-

time system is accomplished through TCP/IP network protocols accessed by way of

Berkeley UNIX socket library functions. The interface between the real-time system and

the instrument is accomplished through the use of specialized programmable plug-in

IRAF CCDACQ - BASIC ARCHITECTURE

Observation Client Real-time System Instrument

UNIX Workstation

i
VME Chassis

or PC
_ setel

Telescope,'CCO

Detector Server

Instrument Server

Telescope Server

Figure 6. CCDACQ Block Diagram

20

boardsthat areusedfor dataacquisitionand control. An IBM PC or somespecialized
microprocessorcommunicateswith the plug-in board throughlocally developedcode,
generallywritten in the C language. This local processorcode controlsthe instrument
andprovidesthecommunicationinterfaceto theremoteserversoftware.

The CCDACQprocessis twofold, first a setof parametersfor eachof theserver
processes(detector,instrumentandtelescope,observation)mustbeset. Theseparameter
settasksonly edit theparameters.Theydo not initiate anyphysicalactionuntil anactual
"observe"or "detector"taskis run. The observercanmakea seriesof testobservations
to check all of the instrumentsand to receivestatusinformation on each. Once the
observationhasbeeninitiated,otheractiontasksallow theobserverto pauseanexposure,
then resume,stop exposureand read out data, or make a seriesof observationswith
currentparameters.IRAF/CCDACQbasicfunctionsareoutlinedin Figure7.

IRAF hasalreadybeenidentifiedastheimagereductionpackageof choiceby the
SIRTF teams. With CCDACQ, instrumentcontrol aswell as imagereductioncanbe
donein oneenvironment. Futureplansare to convert currentMIPS detectortest code
into portableC code incorporatingthe communicationsfunctions required to interface
with theremoteUNIX workstation.Socket-basedIPC(interprocesscommunication)was
chosenfor thetransportlevel programminginterfacebecauseat thetime of development,
it was the preferred standard.However, other OSI-compatible transportmechanisms
baseduponSTREAMSandaccessedby way of a TransportLibrary Interface(TLI) will
needconsideration.

The secondpackagereviewedwasPrecisionVisuals' WorkstationAnalysis and
VisualizationEnvironment(PV-WAVE). PV~WAVE is an interactivedatadisplayand
analysissoftwarepackagecurrentlyusedby the ShortWavelengthSpectrometer(SWS)
Teamfor theEuropeanInfraredSpaceObservatory.PV-WAVE hasit's own structured
applicationdevelopmentlanguage,and a set of proceduresand functions that can be
linked with existing C or FORTRAN code. PV~WAVE is currently installedon a Sun
SPARCstation1andusedby MIPS scientistsin graphicanalysisand modelingof MIPS
detectors. In the implementationof the groundsupportsoftware,62 detectorchannels
aredisplayedin real time on MicoVAX workstation. The PV-WAVE application is
characterizedby very highperformancegraphicsdisplay.

PV-WAVE could function in thecapacityasIRAF/CCDACQ describedabove.
The samecommunicationssoftwaredescribeabovecould be linked with PV~WAVE
functionsfor real-timedataacquisitionandquick look analysis. AlthoughPV~WAVE is
capableof performing manyof the samedataanalysisand graphic functions found in
IRAF, themajor differenceis it's targetuser. IRAF is a packagewritten specificallyfor
astronomicalimagereductionand analysis. It incorporatesmanystandardsusedby the
astronomicalcommunity, like using the FITS format for data exchange. PV~WAVE
userscanbe anyscientific or technicaluser. Additional programingmay be requiredto
performspecificastronomicaltasksin thePV-WAVE environment.

21

IRAF CCDACQ PROCESS

IRAF Scripts

comps
darks
flats

mores
tests
zeros

Observe Task I

pause

resume

stop
abo_

Set Parameters

I

> obspar,<
detpars
instrpars

telpars

Status

I
Detector

Instrument

Telescope

Figure7. IRAF CCDACQProcesses

22

APPENDIX A

Testbed Participants

University of Arizona

Steward Observatory

Dr. Erick T. Young, Principal Investigator

Irene Barg, MIPS Systems Programmer

Electrical and Computer Engineering

Dr. Larry Schooley, Co-Investigator

Yadung Pang, Graduate Student

Henky Wibowo, Graduate Student

23

APPENDIX B

Glossary

CCSDS
DEC
DECnet
ECE
GSE
IC
IRAC
IRAF
IRS
LCC
MIPS
OASIS
PI
RA
RCC
SIRTF
TCP/IP
TSL

VMS

Consultative Committee for Space Data Systems

Declination Astronomical Coordinate

Proprietary Communications Protocol from Digital Equipment Corp.

Electrical and Computer Engineering

Ground Support Equipment

Instrument Controller

Infrared Array Camera

Image Reduction and Analysis Facility

Infrared Spectrometer

Local Control Computer

Multiband Imaging Photometer

Operations And Science Instrument System

Principal Investigator

Right Ascension Astronomical Coordinate

Remote Control Computer

Space Infrared Telescope Facility
Transmission Control Protocol/Internet Protocol

Telescience Laboratory

Proprietary operating system from Digital Equipment Corp.

24

APPENDIXC

Bibliography

Bienz, Richard and Hunter, Jerry, "CommunicationSoftwareDesign for Telescience
Demonstrations",TelescienceTechnicalReport TLS-019/88, Electrical and Computer
EngineeringDepartment,Universityof Arizona,TucsonAZ., 1988.

Schooley,L.C., and F.E. Cellier, "TelescienceTestbedPilot Program Final Report",
Technical Report TSL-021/88, Electrical and Computer Engineering Department,
Universityof Arizona,TucsonAZ., 1988.

Wibowo, Henky, "CommunicationsSoftwarefor Telescience",MastersThesisElectrical
andComputerEngineeringDepartment,Universityof Arizona,Tucson,AZ., 1990.

25

